
OPERATING SYSTEMS

 Important Questions:
1. What is an operating system?
2. What does it do?

12

OPERATING SYSTEMS

 What is an operating system?
 Hard to define precisely – no standard definition because 

operating systems arose historically as people needed to 
solve problems associated with using computers.

 A program that acts as an intermediary between a user of 
a computer and the computer hardware.

 Software that makes computing power available to users 
by controlling the hardware.

 A collection of software modules including device drivers, 
libraries, and access routines.

13

OPERATING SYSTEMS

 What is an operating system? (contd.)
 OS is a resource allocator

 Manages all resources
 Decides between conflicting requests for efficient and fair 

resource use

 OS is a control program
 Controls execution of programs to prevent errors and improper 

use of the computer

 “The one program running at all times on the computer” is 
the kernel.

 Everything else is either
 a system program (ships with the operating system) , or
 an application program.

14

OPERATING SYSTEMS
 User View varies according to the interface being used

 Single User View
 goal is to maximize the work (or play) that the user is performing
 OS is designed mostly for ease of use, with some attention to performance

and none to resource utilization

 Multi-user View
 users share resources and may exchange information.
 OS is designed to maximize resource utilization.

 Handheld computing Devices
 standalone units for individual users
 OS are designed mostly for individual usability, but performance per 

amount of battery life is important as well

 Little or no user view. 
embedded computers in home devices and automobiles

15

OPERATING SYSTEMS

 Operating system goals:
 Execute user programs and make solving user 

problems easier.
Make the computer system convenient to use.
Use the computer hardware in an efficient 

manner 

16

WHAT DOES A MODERN OPERATING SYSTEM DO? 

 Depends on the point of view
 Users want convenience, ease of use and good performance 

 Provides Abstractions:
 Hardware has low-level physical resources with complicated, 

idiosyncratic interfaces.
 OS provides abstractions that present clean interfaces.
 Goal: make computer easier to use.
 Examples: Processes, Unbounded Memory, Files, 

Synchronization and Communication Mechanisms. 

 Provides Standard Interface:
 Goal: portability.
 Unix runs on many and very different computer systems.

17



WHAT DOES A MODERN OPERATING SYSTEM DO?
 Mediates Resource Usage:

 Goal: allow multiple users to share resources fairly, 
efficiently, safely and securely.

 Examples:
 Multiple processes share one processor. (pre-emptable resource)
 Multiple programs share physical memory (pre-emptable

resource).
 Multiple users and files share one or more disks (non pre-

emptable resource).
 Multiple programs share a given amount of disk and network 

bandwidth (pre-emptable resource). 

18

PRESENT AND THE FUTURE…
 Computers will continue to become physically 

smaller and more portable.
 Operating systems have to deal with issues like 

disconnected operation and mobility.
 Media rich information within the grasp of common 

people - information with psuedo-real time 
components like voice and video.

 Operating systems will have to adjust to deliver 
acceptable performance for these new forms of 
data. 

19

FINALLY
 Operating systems are so large no one person 

understands whole system. Outlives any of its 
original builders. 

 The major problem facing computer science today is 
how to build large, reliable software systems.

 Operating systems are one of very few examples of 
existing large software systems, and by studying 
operating systems we may learn lessons applicable 
to the construction of larger systems. 

20

OPERATING SYSTEM OBJECTIVES

 Operating systems are among the most 
complex pieces of software ever developed
Convenience

Makes the computer more convenient to use

 Efficiency
Allows computer system resources to be used in an 

efficient manner

 Ability to evolve
Permit effective development, testing, and introduction 

of new system functions without interfering with 
service

Computer System Structure

 Hardware – provides basic computing 
resources
 CPU, memory, I/O devices

 Operating system
 Controls and coordinates use of hardware 

among various applications and users

 Application programs – define the 
ways in which the system resources 
are used to solve the computing 
problems
 Word processors, compilers, web browsers, 

database systems, video games

 Users
 People, machines, other computers

Computer system can be divided into four components

23

OPERATING SYSTEM SERVICES

 Program development
 Editors, debuggers, frameworks

 Program execution
 Initialization, scheduling

 Access to I/O devices
Uniform interface, hides details

 Controlled access to files
 Authorization, sharing, caching



OS SERVICES (CONTINUED…)

 System access
 Protection, authorization, resolve conflicts

 Error detection and response
 Hardware errors: memory error or device failure
 Software errors: arithmetic errors, access to forbidden 

memory locations, allocation errors

 Accounting
 collect statistics (billing)
 monitor performance
 to anticipate future enhancements

 OS executes same way as ordinary computer 
software - it is a set of computer programs

 The key difference is in the intent
Directs use of resources
Relinquishes control of the processor to execute 

other programs

 Kernel or nucleus
 Portion of operating system that is in main memory
Contains most-frequently used functions

OS AS A RESOURCE MANAGER

 I/O devices and the CPU can execute concurrently.
 Each device controller is in charge of a particular device type.
 Each device controller has a local buffer.
 CPU moves data from/to main memory to/from local buffers
 I/O is from the device to local buffer of controller.
 Device controller informs CPU that it has finished its operation 

by causing an interrupt.

COMPUTER SYSTEM OPERATION Common Functions of Interrupts

 Interrupt transfers control to the interrupt service 
routine generally, through the interrupt vector, which 
contains the addresses of all the service routines.

 Interrupt architecture must save the address of the 
interrupted instruction.

 Incoming interrupts are disabled while another 
interrupt is being processed to prevent a lost interrupt.

 A trap or exception is a software-generated interrupt 
caused either by an error or a user request.

 An operating system is interrupt driven.

Interrupt Handling

 The operating system preserves the state of the 
CPU by storing registers and the program 
counter (PC).

 Determines which type of interrupt has occurred.
 Two Methods:

 polling

 vectored interrupt system

 Separate segments of code determine what 
action should be taken for each type of interrupt

Interrupt Timeline



I/O Structure

Once I/O is started, two methods:
 synchronous I/O 
Control returns to user program only upon I/O completion.
 Can be implemented through Wait instruction (idles the CPU until the 

next interrupt) or Wait loop (contention for memory access).
 Advantage: At most one I/O request is outstanding at a time
 Disadvantage: No simultaneous I/O processing  slow

I/O Structure

 asynchronous I/O 
Control returns to user program without waiting for I/O    

completion.
 Needs System call – request to the operating system to allow user to wait 

for I/O completion.
 Needs to keep track of many I/O requests at same time.
 Device-status table contains entry for each I/O device indicating its

 type, address, and state.

 Operating system indexes into I/O device table to determine device status 
and to modify table entry to include interrupt.

I/O Methods

Synchronous Asynchronous

Evolution of Operating Systems

 Operating systems have evolved because
New types of hardware and hardware upgrades
Development of new services and needs
 Fixes to OS faults
OS Evolution:

Serial Processing

Simple Batch Processing

Multi-programmed Batch Systems

Time-Sharing Systems

Distributed Processing Systems

????

Serial Processing

 Serial Processing
No operating system
Machines run from a console with display lights and 

toggle switches, input device, and printer
 Schedule time
 Setup included loading the compiler, source 

program, saving compiled program, and loading 
and linking

Simple Batch Systems

 Simple Batch Systems
 Monitors

 Software that controls the running programs
 Batch jobs together
 Program branches back to monitor when finished
 Resident monitor is in main memory and available for execution

 Job Control Language (JCL)
 Special type of programming language
 Provides instructions to the monitor (what compiler/data to use)

 Hardware Features
 Memory protection - do not allow the memory area containing the 

monitor to be altered
 Timer - prevents a job from monopolizing the system



Operating System Structure

 Multiprogramming needed for efficiency
 Single user cannot keep CPU and I/O devices busy at all 

times
 Multiprogramming organizes jobs (code and data) so CPU 

always has one to execute
 A subset of total jobs in system (job pool) is kept in memory
 One job selected and run via job scheduling
 When it has to wait (for I/O for example), OS switches to 

another job
 As long as there is one job to execute, CPU is not idle.

Memory Layout for Multiprogrammed System

 If processes don’t fit in memory, swapping moves them in and 
out to run

 Virtual memory allows execution of processes not completely in 
memory

Multiprogramming Effects of Multiprogramming

Uniprogramming Multiprogramming

Processor use 22% 43%
Memory use 30% 67%

Disk use 33% 67%
Printer use 33% 67%

Elapsed time 30 min. 15 min.
Throughput rate 6 jobs/hr 12 jobs/hr
Mean response 

time
18 min. 10 min.

Time-Sharing (Multitasking) Systems

 system resources are used quite effectively in 
multiprogramming but they do not provide for user interaction 
with computer system. 

 Allow several users to interact at the same time
 In timesharing systems, CPU switches jobs so frequently that 

users can interact with each job while it is running, creating 
interactive computing

 Emphasizes response time over processor use (< 1 second)

COMPUTER-SYSTEM ARCHITECTURE

 Most systems use a single general-purpose processor
 Most systems have special-purpose processors as well, e.g. 

GPU

 Multiprocessors systems growing in use and importance
 Also known as parallel systems, tightly-coupled systems
 Advantages include:

1. Increased throughput
2. Economy of scale
3. Increased reliability – graceful degradation or fault tolerance

 Graceful Degradation: ability to continue providing service proportional to the level 
of surviving hardware 

 Fault Tolerance: ability to continue even after failure of a component



COMPUTER-SYSTEM ARCHITECTURE

 Two types:
1. Asymmetric Multiprocessing – each processor is assigned a 

specie task.
 Each processor is assigned a specific task.
 A master processor controls the system (other looks for task or has 

defined tasks)
 Master – slave relationship

2. Symmetric Multiprocessing – each processor performs all 
tasks
 No master-slave relationship – all are peers
 Each processor performs the task within OS
 Example of SMP system is Solaris

SYMMETRIC MULTIPROCESSING ARCHITECTURE

A DUAL-CORE DESIGN

 Multi-chip and multicore
 Systems containing all chips

 Chassis containing multiple separate systems

TERMS TO KNOW AND REMEMBER:
 Single user system.
 Batch systems – No timing constraints. To speed up the processing, several simi-

lar jobs are put together as a group better system utilization.
 Multiprogramming – Several programs in memory at same time so that

CPU always has something
 Multiprocessing – Several jobs are handled at (virtually) same time.
 Time-sharing (multitasking)– CPU executes multiple jobs by switching among them
 Interactive Systems – Provide direct communication between the user and the system.
 Multiprocessor System – System has >= 1 CPU and system bus, clock and memory is

shared by all.
 Parallel systems
 Graceful degradation – With multiple resources, if a resource fails, work continues with

reduced efficiency.
 Fault tolerant Systems – systems those support graceful degradation.
 Real-time systems – used when there are rigid time requirements

(e.g. space shuttle, control systems,)
 Networked Systems – allows different processes on different systems to share

information on network
 Distributed systems – Different machines/OS communicate closely enough to provide

the illusion that there is only one system.

OPERATING-SYSTEM OPERATIONS

 Dual-mode operation allows OS to protect itself and 
other system components
 User mode and kernel mode 
 Mode bit provided by hardware

 Provides ability to distinguish when system is running user code or 
kernel code

 Some instructions designated as privileged, only executable in kernel 
mode

 System call changes mode to kernel, return from call resets it to user

System Calls

 Programming interface to the services provided by the 
OS

 Typically written in a high-level language (C or C++)
 Mostly accessed by programs via a high-level 

Application Program Interface (API) rather than direct 
system call use

 Three most common APIs are Win32 API for Windows, 
POSIX API for POSIX-based systems (including virtually all 
versions of UNIX, Linux, and Mac OS X), and Java API for the 
Java virtual machine (JVM)



System Call Implementation

 Typically, a number associated with each system call
 System-call interface maintains a table indexed according to 

these numbers

 The system call interface invokes intended system call 
in OS kernel and returns status of the system call and 
any return values

 The caller need know nothing about how the system 
call is implemented
 Most details of  OS interface hidden from programmer by 

API  
 Managed by run-time support library (set of functions built into 

libraries included with compiler)

OPERATING SYSTEM DESIGN AND IMPLEMENTATION

 Design and Implementation of OS not “solvable”, but some 
approaches have proven successful

 Internal structure of different Operating Systems  can vary widely

 Start the design by defining goals and specifications 

 Affected by choice of hardware, type of system

 User goals and System goals:

 User goals – operating system should be convenient to use, 
easy to learn, reliable, safe, and fast

 System goals – operating system should be easy to design, 
implement, and maintain, as well as flexible, reliable, error-
free, and efficient

OPERATING SYSTEM DESIGN & IMPLEMENTATION (CONT.)

 Important principle to separate
Policy:   What will be done?
Mechanism:  How to do it?
 Mechanisms determine how to do something, policies decide what will 

be done

 The separation of policy from mechanism is a very important 
principle, it allows maximum flexibility so that if policy 
decisions are to be changed later (example – timer)

 Specifying and designing an OS is highly creative task of 
software engineering

OPERATING SYSTEM STRUCTURE

 General-purpose OS is very large program
 Various ways to structure ones:

 Simple structure – MS-DOS
More complex -- UNIX
 Layered – an abstraction
Microkernel -Mach

SIMPLE STRUCTURE  -- MS-DOS

 MS-DOS – written to provide 
the most functionality in the 
least space
 Not divided into modules
 Although MS-DOS has some 

structure, its interfaces and 
levels of functionality are not 
well separated

NON SIMPLE STRUCTURE  -- UNIX

UNIX – limited by hardware functionality, the 
original UNIX operating system had limited 
structuring.  The UNIX OS consists of two 
separable parts
 Systems programs
 The kernel

Consists of everything below the system-call interface and 
above the physical hardware

Provides the file system, CPU scheduling, memory 
management, and other operating-system functions; a 
large number of functions for one level



TRADITIONAL UNIX SYSTEM STRUCTURE

Beyond simple but not fully layered

LAYERED APPROACH

 The operating system is divided into a 
number of layers (levels), each built on 
top of lower layers.  The bottom layer 
(layer 0), is the hardware; the highest 
(layer N) is the user interface.

 With modularity, layers are selected such 
that each uses functions (operations) and 
services of only lower-level layers

MICROKERNEL SYSTEM STRUCTURE 

 Moves as much from the kernel into user space  Microkernel
 Example  - Mach 

 Mac OS X kernel (Darwin) partly based on Mach
 Communication takes place between user modules using 

message passing
 Benefits:

 Easier to extend a microkernel
 Easier to port the operating system to new architectures
 More reliable (less code is running in kernel mode)
 More secure

 Detriments:
 Performance overhead of user space to kernel space 

communication

MICROKERNEL SYSTEM STRUCTURE 

MODULES

 Many modern operating systems implement loadable kernel 
modules
 Uses object-oriented approach
 Each core component is separate
 Each talks to the others over known interfaces
 Each is loadable as needed within the kernel

 Overall, similar to layers but with more flexible
 Linux, Solaris, etc.

Solaris Modular Approach

HYBRID SYSTEMS

 Most modern operating systems are actually not one pure 
model
 Hybrid combines multiple approaches to address 

performance, security, usability needs
 Linux and Solaris kernels in kernel address space, so 

monolithic, plus modular for dynamic loading of functionality
 Windows mostly monolithic, plus microkernel for different 

subsystem personalities

 Apple Mac OS X hybrid, layered, Aqua UI plus Cocoa
programming environment
 Below is kernel consisting of Mach microkernel and BSD Unix 

parts, plus I/O kit and dynamically loadable modules (called 
kernel extensions)



MAC OS X STRUCTURE IOS

 Apple mobile OS for iPhone, iPad

 Structured on Mac OS X, added functionality
 Does not run OS X applications natively

 Also runs on different CPU architecture (ARM 
vs. Intel)

 Cocoa Touch Objective-C API for developing apps
 Media services layer for graphics, audio, video
 Core services provides cloud computing, databases
 Core operating system, based on Mac OS X kernel

ANDROID

 Developed by Open Handset Alliance (mostly Google)
 Open Source

 Similar stack to IOS
 Based on Linux kernel but modified

 Provides process, memory, device-driver management
 Adds power management 

 Runtime environment includes core set of libraries and Dalvik
virtual machine
 Apps developed in Java plus Android API

 Java class files compiled to Java bytecode then 
translated to executable than runs in Dalvik VM

 Libraries include frameworks for web browser (webkit), 
database (SQLite), multimedia, smaller libc

ANDROID ARCHITECTURE

Major Achievements

 Processes
 Memory Management
 Information protection and security
 Scheduling and resource management
 System structure

Processes

 Processes are the fundamental structure of operating systems
 A process is a program in execution.
 A unit of activity characterized by a sequential thread of execution, 

current state, and an associated set of system resources
 Program is a passive entity, process is an active entity

 Process needs resources to accomplish its task
 CPU, memory, I/O, files
 Initialization data

 Process termination requires reclaim of any reusable resources
 Single-threaded process has one program counter specifying 

location of next instruction to execute
 Process executes instructions sequentially, one at a time, until 

completion



Processes

 Multi-threaded process has one program counter per thread
 Typically system has many processes, some user, some 

operating system running concurrently on one or more CPUs
 Concurrency by multiplexing the CPUs among the processes / threads 

 Processes solved the problems introduced by
 Multiprogramming batch operations
 Time sharing
 Real-time transaction systems

 Principle tool available to system programmers in developing 
multi-tasking systems is the interrupt!

Processes (continued…)

 Coordination of processes turned out remarkably 
difficult
 Improper synchronization
 Failed mutual exclusion
 Non-determinate program operation
 Deadlocks

 Processes consist of three components
 An executable program
 Associated data (variables, workspace, buffers, stacks, 

etc.)
 The execution context of the program

Processes Management Activities

 The operating system is responsible for the 
following activities in  connection with process 
management:
Creating and deleting both user and system 

processes
 Suspending and resuming processes
 Providing mechanisms for process synchronization
 Providing mechanisms for process communication
 Providing mechanisms for deadlock handling

Memory Management

 All data in memory before and after processing
 All instructions in memory in order to execute
 Memory management determines what is in 

memory when
 Optimizing CPU utilization and computer 

response to users 

Memory Management

 Principle storage management responsibilities
 Process isolation
 Automatic allocation/deallocation and management
 Support of modular programming, i.e., deciding which 

processes (or parts thereof) and data to move into and out 
of memory

 Protection and access control
 Long-term storage

 These requirements typically met by
 Virtual memory
 File system facilities

Information Protection and Security

 Time-sharing and computer networks require
 Availability
Confidentiality
Data integrity
 Authenticity



Scheduling and Resource Management

 Any resource allocation and scheduling policy 
must consider
 Fairness
Differential responsiveness
 Efficiency

 Processes/resources are dispatched using
Round-robin
 Priority levels
 Long-term / short-term queues


