
OPERATING SYSTEMS

 Important Questions:
1. What is an operating system?
2. What does it do?

12

OPERATING SYSTEMS

 What is an operating system?
 Hard to define precisely – no standard definition because

operating systems arose historically as people needed to
solve problems associated with using computers.

 A program that acts as an intermediary between a user of
a computer and the computer hardware.

 Software that makes computing power available to users
by controlling the hardware.

 A collection of software modules including device drivers,
libraries, and access routines.

13

OPERATING SYSTEMS

 What is an operating system? (contd.)
 OS is a resource allocator

 Manages all resources
 Decides between conflicting requests for efficient and fair

resource use

 OS is a control program
 Controls execution of programs to prevent errors and improper

use of the computer

 “The one program running at all times on the computer” is
the kernel.

 Everything else is either
 a system program (ships with the operating system) , or
 an application program.

14

OPERATING SYSTEMS
 User View varies according to the interface being used

 Single User View
 goal is to maximize the work (or play) that the user is performing
 OS is designed mostly for ease of use, with some attention to performance

and none to resource utilization

 Multi-user View
 users share resources and may exchange information.
 OS is designed to maximize resource utilization.

 Handheld computing Devices
 standalone units for individual users
 OS are designed mostly for individual usability, but performance per

amount of battery life is important as well

 Little or no user view.
embedded computers in home devices and automobiles

15

OPERATING SYSTEMS

 Operating system goals:
 Execute user programs and make solving user

problems easier.
Make the computer system convenient to use.
Use the computer hardware in an efficient

manner

16

WHAT DOES A MODERN OPERATING SYSTEM DO?

 Depends on the point of view
 Users want convenience, ease of use and good performance

 Provides Abstractions:
 Hardware has low-level physical resources with complicated,

idiosyncratic interfaces.
 OS provides abstractions that present clean interfaces.
 Goal: make computer easier to use.
 Examples: Processes, Unbounded Memory, Files,

Synchronization and Communication Mechanisms.

 Provides Standard Interface:
 Goal: portability.
 Unix runs on many and very different computer systems.

17

WHAT DOES A MODERN OPERATING SYSTEM DO?
 Mediates Resource Usage:

 Goal: allow multiple users to share resources fairly,
efficiently, safely and securely.

 Examples:
 Multiple processes share one processor. (pre-emptable resource)
 Multiple programs share physical memory (pre-emptable

resource).
 Multiple users and files share one or more disks (non pre-

emptable resource).
 Multiple programs share a given amount of disk and network

bandwidth (pre-emptable resource).

18

PRESENT AND THE FUTURE…
 Computers will continue to become physically

smaller and more portable.
 Operating systems have to deal with issues like

disconnected operation and mobility.
 Media rich information within the grasp of common

people - information with psuedo-real time
components like voice and video.

 Operating systems will have to adjust to deliver
acceptable performance for these new forms of
data.

19

FINALLY
 Operating systems are so large no one person

understands whole system. Outlives any of its
original builders.

 The major problem facing computer science today is
how to build large, reliable software systems.

 Operating systems are one of very few examples of
existing large software systems, and by studying
operating systems we may learn lessons applicable
to the construction of larger systems.

20

OPERATING SYSTEM OBJECTIVES

 Operating systems are among the most
complex pieces of software ever developed
Convenience

Makes the computer more convenient to use

 Efficiency
Allows computer system resources to be used in an

efficient manner

 Ability to evolve
Permit effective development, testing, and introduction

of new system functions without interfering with
service

Computer System Structure

 Hardware – provides basic computing
resources
 CPU, memory, I/O devices

 Operating system
 Controls and coordinates use of hardware

among various applications and users

 Application programs – define the
ways in which the system resources
are used to solve the computing
problems
 Word processors, compilers, web browsers,

database systems, video games

 Users
 People, machines, other computers

Computer system can be divided into four components

23

OPERATING SYSTEM SERVICES

 Program development
 Editors, debuggers, frameworks

 Program execution
 Initialization, scheduling

 Access to I/O devices
Uniform interface, hides details

 Controlled access to files
 Authorization, sharing, caching

OS SERVICES (CONTINUED…)

 System access
 Protection, authorization, resolve conflicts

 Error detection and response
 Hardware errors: memory error or device failure
 Software errors: arithmetic errors, access to forbidden

memory locations, allocation errors

 Accounting
 collect statistics (billing)
 monitor performance
 to anticipate future enhancements

 OS executes same way as ordinary computer
software - it is a set of computer programs

 The key difference is in the intent
Directs use of resources
Relinquishes control of the processor to execute

other programs

 Kernel or nucleus
 Portion of operating system that is in main memory
Contains most-frequently used functions

OS AS A RESOURCE MANAGER

 I/O devices and the CPU can execute concurrently.
 Each device controller is in charge of a particular device type.
 Each device controller has a local buffer.
 CPU moves data from/to main memory to/from local buffers
 I/O is from the device to local buffer of controller.
 Device controller informs CPU that it has finished its operation

by causing an interrupt.

COMPUTER SYSTEM OPERATION Common Functions of Interrupts

 Interrupt transfers control to the interrupt service
routine generally, through the interrupt vector, which
contains the addresses of all the service routines.

 Interrupt architecture must save the address of the
interrupted instruction.

 Incoming interrupts are disabled while another
interrupt is being processed to prevent a lost interrupt.

 A trap or exception is a software-generated interrupt
caused either by an error or a user request.

 An operating system is interrupt driven.

Interrupt Handling

 The operating system preserves the state of the
CPU by storing registers and the program
counter (PC).

 Determines which type of interrupt has occurred.
 Two Methods:

 polling

 vectored interrupt system

 Separate segments of code determine what
action should be taken for each type of interrupt

Interrupt Timeline

I/O Structure

Once I/O is started, two methods:
 synchronous I/O
Control returns to user program only upon I/O completion.
 Can be implemented through Wait instruction (idles the CPU until the

next interrupt) or Wait loop (contention for memory access).
 Advantage: At most one I/O request is outstanding at a time
 Disadvantage: No simultaneous I/O processing  slow

I/O Structure

 asynchronous I/O
Control returns to user program without waiting for I/O

completion.
 Needs System call – request to the operating system to allow user to wait

for I/O completion.
 Needs to keep track of many I/O requests at same time.
 Device-status table contains entry for each I/O device indicating its

 type, address, and state.

 Operating system indexes into I/O device table to determine device status
and to modify table entry to include interrupt.

I/O Methods

Synchronous Asynchronous

Evolution of Operating Systems

 Operating systems have evolved because
New types of hardware and hardware upgrades
Development of new services and needs
 Fixes to OS faults
OS Evolution:

Serial Processing

Simple Batch Processing

Multi-programmed Batch Systems

Time-Sharing Systems

Distributed Processing Systems

????

Serial Processing

 Serial Processing
No operating system
Machines run from a console with display lights and

toggle switches, input device, and printer
 Schedule time
 Setup included loading the compiler, source

program, saving compiled program, and loading
and linking

Simple Batch Systems

 Simple Batch Systems
 Monitors

 Software that controls the running programs
 Batch jobs together
 Program branches back to monitor when finished
 Resident monitor is in main memory and available for execution

 Job Control Language (JCL)
 Special type of programming language
 Provides instructions to the monitor (what compiler/data to use)

 Hardware Features
 Memory protection - do not allow the memory area containing the

monitor to be altered
 Timer - prevents a job from monopolizing the system

Operating System Structure

 Multiprogramming needed for efficiency
 Single user cannot keep CPU and I/O devices busy at all

times
 Multiprogramming organizes jobs (code and data) so CPU

always has one to execute
 A subset of total jobs in system (job pool) is kept in memory
 One job selected and run via job scheduling
 When it has to wait (for I/O for example), OS switches to

another job
 As long as there is one job to execute, CPU is not idle.

Memory Layout for Multiprogrammed System

 If processes don’t fit in memory, swapping moves them in and
out to run

 Virtual memory allows execution of processes not completely in
memory

Multiprogramming Effects of Multiprogramming

Uniprogramming Multiprogramming

Processor use 22% 43%
Memory use 30% 67%

Disk use 33% 67%
Printer use 33% 67%

Elapsed time 30 min. 15 min.
Throughput rate 6 jobs/hr 12 jobs/hr
Mean response

time
18 min. 10 min.

Time-Sharing (Multitasking) Systems

 system resources are used quite effectively in
multiprogramming but they do not provide for user interaction
with computer system.

 Allow several users to interact at the same time
 In timesharing systems, CPU switches jobs so frequently that

users can interact with each job while it is running, creating
interactive computing

 Emphasizes response time over processor use (< 1 second)

COMPUTER-SYSTEM ARCHITECTURE

 Most systems use a single general-purpose processor
 Most systems have special-purpose processors as well, e.g.

GPU

 Multiprocessors systems growing in use and importance
 Also known as parallel systems, tightly-coupled systems
 Advantages include:

1. Increased throughput
2. Economy of scale
3. Increased reliability – graceful degradation or fault tolerance

 Graceful Degradation: ability to continue providing service proportional to the level
of surviving hardware

 Fault Tolerance: ability to continue even after failure of a component

COMPUTER-SYSTEM ARCHITECTURE

 Two types:
1. Asymmetric Multiprocessing – each processor is assigned a

specie task.
 Each processor is assigned a specific task.
 A master processor controls the system (other looks for task or has

defined tasks)
 Master – slave relationship

2. Symmetric Multiprocessing – each processor performs all
tasks
 No master-slave relationship – all are peers
 Each processor performs the task within OS
 Example of SMP system is Solaris

SYMMETRIC MULTIPROCESSING ARCHITECTURE

A DUAL-CORE DESIGN

 Multi-chip and multicore
 Systems containing all chips

 Chassis containing multiple separate systems

TERMS TO KNOW AND REMEMBER:
 Single user system.
 Batch systems – No timing constraints. To speed up the processing, several simi-

lar jobs are put together as a group better system utilization.
 Multiprogramming – Several programs in memory at same time so that

CPU always has something
 Multiprocessing – Several jobs are handled at (virtually) same time.
 Time-sharing (multitasking)– CPU executes multiple jobs by switching among them
 Interactive Systems – Provide direct communication between the user and the system.
 Multiprocessor System – System has >= 1 CPU and system bus, clock and memory is

shared by all.
 Parallel systems
 Graceful degradation – With multiple resources, if a resource fails, work continues with

reduced efficiency.
 Fault tolerant Systems – systems those support graceful degradation.
 Real-time systems – used when there are rigid time requirements

(e.g. space shuttle, control systems,)
 Networked Systems – allows different processes on different systems to share

information on network
 Distributed systems – Different machines/OS communicate closely enough to provide

the illusion that there is only one system.

OPERATING-SYSTEM OPERATIONS

 Dual-mode operation allows OS to protect itself and
other system components
 User mode and kernel mode
 Mode bit provided by hardware

 Provides ability to distinguish when system is running user code or
kernel code

 Some instructions designated as privileged, only executable in kernel
mode

 System call changes mode to kernel, return from call resets it to user

System Calls

 Programming interface to the services provided by the
OS

 Typically written in a high-level language (C or C++)
 Mostly accessed by programs via a high-level

Application Program Interface (API) rather than direct
system call use

 Three most common APIs are Win32 API for Windows,
POSIX API for POSIX-based systems (including virtually all
versions of UNIX, Linux, and Mac OS X), and Java API for the
Java virtual machine (JVM)

System Call Implementation

 Typically, a number associated with each system call
 System-call interface maintains a table indexed according to

these numbers

 The system call interface invokes intended system call
in OS kernel and returns status of the system call and
any return values

 The caller need know nothing about how the system
call is implemented
 Most details of OS interface hidden from programmer by

API
 Managed by run-time support library (set of functions built into

libraries included with compiler)

OPERATING SYSTEM DESIGN AND IMPLEMENTATION

 Design and Implementation of OS not “solvable”, but some
approaches have proven successful

 Internal structure of different Operating Systems can vary widely

 Start the design by defining goals and specifications

 Affected by choice of hardware, type of system

 User goals and System goals:

 User goals – operating system should be convenient to use,
easy to learn, reliable, safe, and fast

 System goals – operating system should be easy to design,
implement, and maintain, as well as flexible, reliable, error-
free, and efficient

OPERATING SYSTEM DESIGN & IMPLEMENTATION (CONT.)

 Important principle to separate
Policy: What will be done?
Mechanism: How to do it?
 Mechanisms determine how to do something, policies decide what will

be done

 The separation of policy from mechanism is a very important
principle, it allows maximum flexibility so that if policy
decisions are to be changed later (example – timer)

 Specifying and designing an OS is highly creative task of
software engineering

OPERATING SYSTEM STRUCTURE

 General-purpose OS is very large program
 Various ways to structure ones:

 Simple structure – MS-DOS
More complex -- UNIX
 Layered – an abstraction
Microkernel -Mach

SIMPLE STRUCTURE -- MS-DOS

 MS-DOS – written to provide
the most functionality in the
least space
 Not divided into modules
 Although MS-DOS has some

structure, its interfaces and
levels of functionality are not
well separated

NON SIMPLE STRUCTURE -- UNIX

UNIX – limited by hardware functionality, the
original UNIX operating system had limited
structuring. The UNIX OS consists of two
separable parts
 Systems programs
 The kernel

Consists of everything below the system-call interface and
above the physical hardware

Provides the file system, CPU scheduling, memory
management, and other operating-system functions; a
large number of functions for one level

TRADITIONAL UNIX SYSTEM STRUCTURE

Beyond simple but not fully layered

LAYERED APPROACH

 The operating system is divided into a
number of layers (levels), each built on
top of lower layers. The bottom layer
(layer 0), is the hardware; the highest
(layer N) is the user interface.

 With modularity, layers are selected such
that each uses functions (operations) and
services of only lower-level layers

MICROKERNEL SYSTEM STRUCTURE

 Moves as much from the kernel into user space  Microkernel
 Example - Mach

 Mac OS X kernel (Darwin) partly based on Mach
 Communication takes place between user modules using

message passing
 Benefits:

 Easier to extend a microkernel
 Easier to port the operating system to new architectures
 More reliable (less code is running in kernel mode)
 More secure

 Detriments:
 Performance overhead of user space to kernel space

communication

MICROKERNEL SYSTEM STRUCTURE

MODULES

 Many modern operating systems implement loadable kernel
modules
 Uses object-oriented approach
 Each core component is separate
 Each talks to the others over known interfaces
 Each is loadable as needed within the kernel

 Overall, similar to layers but with more flexible
 Linux, Solaris, etc.

Solaris Modular Approach

HYBRID SYSTEMS

 Most modern operating systems are actually not one pure
model
 Hybrid combines multiple approaches to address

performance, security, usability needs
 Linux and Solaris kernels in kernel address space, so

monolithic, plus modular for dynamic loading of functionality
 Windows mostly monolithic, plus microkernel for different

subsystem personalities

 Apple Mac OS X hybrid, layered, Aqua UI plus Cocoa
programming environment
 Below is kernel consisting of Mach microkernel and BSD Unix

parts, plus I/O kit and dynamically loadable modules (called
kernel extensions)

MAC OS X STRUCTURE IOS

 Apple mobile OS for iPhone, iPad

 Structured on Mac OS X, added functionality
 Does not run OS X applications natively

 Also runs on different CPU architecture (ARM
vs. Intel)

 Cocoa Touch Objective-C API for developing apps
 Media services layer for graphics, audio, video
 Core services provides cloud computing, databases
 Core operating system, based on Mac OS X kernel

ANDROID

 Developed by Open Handset Alliance (mostly Google)
 Open Source

 Similar stack to IOS
 Based on Linux kernel but modified

 Provides process, memory, device-driver management
 Adds power management

 Runtime environment includes core set of libraries and Dalvik
virtual machine
 Apps developed in Java plus Android API

 Java class files compiled to Java bytecode then
translated to executable than runs in Dalvik VM

 Libraries include frameworks for web browser (webkit),
database (SQLite), multimedia, smaller libc

ANDROID ARCHITECTURE

Major Achievements

 Processes
 Memory Management
 Information protection and security
 Scheduling and resource management
 System structure

Processes

 Processes are the fundamental structure of operating systems
 A process is a program in execution.
 A unit of activity characterized by a sequential thread of execution,

current state, and an associated set of system resources
 Program is a passive entity, process is an active entity

 Process needs resources to accomplish its task
 CPU, memory, I/O, files
 Initialization data

 Process termination requires reclaim of any reusable resources
 Single-threaded process has one program counter specifying

location of next instruction to execute
 Process executes instructions sequentially, one at a time, until

completion

Processes

 Multi-threaded process has one program counter per thread
 Typically system has many processes, some user, some

operating system running concurrently on one or more CPUs
 Concurrency by multiplexing the CPUs among the processes / threads

 Processes solved the problems introduced by
 Multiprogramming batch operations
 Time sharing
 Real-time transaction systems

 Principle tool available to system programmers in developing
multi-tasking systems is the interrupt!

Processes (continued…)

 Coordination of processes turned out remarkably
difficult
 Improper synchronization
 Failed mutual exclusion
 Non-determinate program operation
 Deadlocks

 Processes consist of three components
 An executable program
 Associated data (variables, workspace, buffers, stacks,

etc.)
 The execution context of the program

Processes Management Activities

 The operating system is responsible for the
following activities in connection with process
management:
Creating and deleting both user and system

processes
 Suspending and resuming processes
 Providing mechanisms for process synchronization
 Providing mechanisms for process communication
 Providing mechanisms for deadlock handling

Memory Management

 All data in memory before and after processing
 All instructions in memory in order to execute
 Memory management determines what is in

memory when
 Optimizing CPU utilization and computer

response to users

Memory Management

 Principle storage management responsibilities
 Process isolation
 Automatic allocation/deallocation and management
 Support of modular programming, i.e., deciding which

processes (or parts thereof) and data to move into and out
of memory

 Protection and access control
 Long-term storage

 These requirements typically met by
 Virtual memory
 File system facilities

Information Protection and Security

 Time-sharing and computer networks require
 Availability
Confidentiality
Data integrity
 Authenticity

Scheduling and Resource Management

 Any resource allocation and scheduling policy
must consider
 Fairness
Differential responsiveness
 Efficiency

 Processes/resources are dispatched using
Round-robin
 Priority levels
 Long-term / short-term queues

