
OPERATING SYSTEMS

 Important Questions:
1. What is an operating system?
2. What does it do?
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OPERATING SYSTEMS

 What is an operating system?
 Hard to define precisely – no standard definition because 

operating systems arose historically as people needed to 
solve problems associated with using computers.

 A program that acts as an intermediary between a user of 
a computer and the computer hardware.

 Software that makes computing power available to users 
by controlling the hardware.

 A collection of software modules including device drivers, 
libraries, and access routines.
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OPERATING SYSTEMS

 What is an operating system? (contd.)
 OS is a resource allocator

 Manages all resources
 Decides between conflicting requests for efficient and fair 

resource use

 OS is a control program
 Controls execution of programs to prevent errors and improper 

use of the computer

 “The one program running at all times on the computer” is 
the kernel.

 Everything else is either
 a system program (ships with the operating system) , or
 an application program.
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OPERATING SYSTEMS
 User View varies according to the interface being used

 Single User View
 goal is to maximize the work (or play) that the user is performing
 OS is designed mostly for ease of use, with some attention to performance

and none to resource utilization

 Multi-user View
 users share resources and may exchange information.
 OS is designed to maximize resource utilization.

 Handheld computing Devices
 standalone units for individual users
 OS are designed mostly for individual usability, but performance per 

amount of battery life is important as well

 Little or no user view. 
embedded computers in home devices and automobiles
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OPERATING SYSTEMS

 Operating system goals:
 Execute user programs and make solving user 

problems easier.
Make the computer system convenient to use.
Use the computer hardware in an efficient 

manner 
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WHAT DOES A MODERN OPERATING SYSTEM DO? 

 Depends on the point of view
 Users want convenience, ease of use and good performance 

 Provides Abstractions:
 Hardware has low-level physical resources with complicated, 

idiosyncratic interfaces.
 OS provides abstractions that present clean interfaces.
 Goal: make computer easier to use.
 Examples: Processes, Unbounded Memory, Files, 

Synchronization and Communication Mechanisms. 

 Provides Standard Interface:
 Goal: portability.
 Unix runs on many and very different computer systems.
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WHAT DOES A MODERN OPERATING SYSTEM DO?
 Mediates Resource Usage:

 Goal: allow multiple users to share resources fairly, 
efficiently, safely and securely.

 Examples:
 Multiple processes share one processor. (pre-emptable resource)
 Multiple programs share physical memory (pre-emptable

resource).
 Multiple users and files share one or more disks (non pre-

emptable resource).
 Multiple programs share a given amount of disk and network 

bandwidth (pre-emptable resource). 
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PRESENT AND THE FUTURE…
 Computers will continue to become physically 

smaller and more portable.
 Operating systems have to deal with issues like 

disconnected operation and mobility.
 Media rich information within the grasp of common 

people - information with psuedo-real time 
components like voice and video.

 Operating systems will have to adjust to deliver 
acceptable performance for these new forms of 
data. 
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FINALLY
 Operating systems are so large no one person 

understands whole system. Outlives any of its 
original builders. 

 The major problem facing computer science today is 
how to build large, reliable software systems.

 Operating systems are one of very few examples of 
existing large software systems, and by studying 
operating systems we may learn lessons applicable 
to the construction of larger systems. 
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OPERATING SYSTEM OBJECTIVES

 Operating systems are among the most 
complex pieces of software ever developed
Convenience

Makes the computer more convenient to use

 Efficiency
Allows computer system resources to be used in an 

efficient manner

 Ability to evolve
Permit effective development, testing, and introduction 

of new system functions without interfering with 
service

Computer System Structure

 Hardware – provides basic computing 
resources
 CPU, memory, I/O devices

 Operating system
 Controls and coordinates use of hardware 

among various applications and users

 Application programs – define the 
ways in which the system resources 
are used to solve the computing 
problems
 Word processors, compilers, web browsers, 

database systems, video games

 Users
 People, machines, other computers

Computer system can be divided into four components

23

OPERATING SYSTEM SERVICES

 Program development
 Editors, debuggers, frameworks

 Program execution
 Initialization, scheduling

 Access to I/O devices
Uniform interface, hides details

 Controlled access to files
 Authorization, sharing, caching



OS SERVICES (CONTINUED…)

 System access
 Protection, authorization, resolve conflicts

 Error detection and response
 Hardware errors: memory error or device failure
 Software errors: arithmetic errors, access to forbidden 

memory locations, allocation errors

 Accounting
 collect statistics (billing)
 monitor performance
 to anticipate future enhancements

 OS executes same way as ordinary computer 
software - it is a set of computer programs

 The key difference is in the intent
Directs use of resources
Relinquishes control of the processor to execute 

other programs

 Kernel or nucleus
 Portion of operating system that is in main memory
Contains most-frequently used functions

OS AS A RESOURCE MANAGER

 I/O devices and the CPU can execute concurrently.
 Each device controller is in charge of a particular device type.
 Each device controller has a local buffer.
 CPU moves data from/to main memory to/from local buffers
 I/O is from the device to local buffer of controller.
 Device controller informs CPU that it has finished its operation 

by causing an interrupt.

COMPUTER SYSTEM OPERATION Common Functions of Interrupts

 Interrupt transfers control to the interrupt service 
routine generally, through the interrupt vector, which 
contains the addresses of all the service routines.

 Interrupt architecture must save the address of the 
interrupted instruction.

 Incoming interrupts are disabled while another 
interrupt is being processed to prevent a lost interrupt.

 A trap or exception is a software-generated interrupt 
caused either by an error or a user request.

 An operating system is interrupt driven.

Interrupt Handling

 The operating system preserves the state of the 
CPU by storing registers and the program 
counter (PC).

 Determines which type of interrupt has occurred.
 Two Methods:

 polling

 vectored interrupt system

 Separate segments of code determine what 
action should be taken for each type of interrupt

Interrupt Timeline



I/O Structure

Once I/O is started, two methods:
 synchronous I/O 
Control returns to user program only upon I/O completion.
 Can be implemented through Wait instruction (idles the CPU until the 

next interrupt) or Wait loop (contention for memory access).
 Advantage: At most one I/O request is outstanding at a time
 Disadvantage: No simultaneous I/O processing  slow

I/O Structure

 asynchronous I/O 
Control returns to user program without waiting for I/O    

completion.
 Needs System call – request to the operating system to allow user to wait 

for I/O completion.
 Needs to keep track of many I/O requests at same time.
 Device-status table contains entry for each I/O device indicating its

 type, address, and state.

 Operating system indexes into I/O device table to determine device status 
and to modify table entry to include interrupt.

I/O Methods

Synchronous Asynchronous

Evolution of Operating Systems

 Operating systems have evolved because
New types of hardware and hardware upgrades
Development of new services and needs
 Fixes to OS faults
OS Evolution:

Serial Processing

Simple Batch Processing

Multi-programmed Batch Systems

Time-Sharing Systems

Distributed Processing Systems

????

Serial Processing

 Serial Processing
No operating system
Machines run from a console with display lights and 

toggle switches, input device, and printer
 Schedule time
 Setup included loading the compiler, source 

program, saving compiled program, and loading 
and linking

Simple Batch Systems

 Simple Batch Systems
 Monitors

 Software that controls the running programs
 Batch jobs together
 Program branches back to monitor when finished
 Resident monitor is in main memory and available for execution

 Job Control Language (JCL)
 Special type of programming language
 Provides instructions to the monitor (what compiler/data to use)

 Hardware Features
 Memory protection - do not allow the memory area containing the 

monitor to be altered
 Timer - prevents a job from monopolizing the system



Operating System Structure

 Multiprogramming needed for efficiency
 Single user cannot keep CPU and I/O devices busy at all 

times
 Multiprogramming organizes jobs (code and data) so CPU 

always has one to execute
 A subset of total jobs in system (job pool) is kept in memory
 One job selected and run via job scheduling
 When it has to wait (for I/O for example), OS switches to 

another job
 As long as there is one job to execute, CPU is not idle.

Memory Layout for Multiprogrammed System

 If processes don’t fit in memory, swapping moves them in and 
out to run

 Virtual memory allows execution of processes not completely in 
memory

Multiprogramming Effects of Multiprogramming

Uniprogramming Multiprogramming

Processor use 22% 43%
Memory use 30% 67%

Disk use 33% 67%
Printer use 33% 67%

Elapsed time 30 min. 15 min.
Throughput rate 6 jobs/hr 12 jobs/hr
Mean response 

time
18 min. 10 min.

Time-Sharing (Multitasking) Systems

 system resources are used quite effectively in 
multiprogramming but they do not provide for user interaction 
with computer system. 

 Allow several users to interact at the same time
 In timesharing systems, CPU switches jobs so frequently that 

users can interact with each job while it is running, creating 
interactive computing

 Emphasizes response time over processor use (< 1 second)

COMPUTER-SYSTEM ARCHITECTURE

 Most systems use a single general-purpose processor
 Most systems have special-purpose processors as well, e.g. 

GPU

 Multiprocessors systems growing in use and importance
 Also known as parallel systems, tightly-coupled systems
 Advantages include:

1. Increased throughput
2. Economy of scale
3. Increased reliability – graceful degradation or fault tolerance

 Graceful Degradation: ability to continue providing service proportional to the level 
of surviving hardware 

 Fault Tolerance: ability to continue even after failure of a component



COMPUTER-SYSTEM ARCHITECTURE

 Two types:
1. Asymmetric Multiprocessing – each processor is assigned a 

specie task.
 Each processor is assigned a specific task.
 A master processor controls the system (other looks for task or has 

defined tasks)
 Master – slave relationship

2. Symmetric Multiprocessing – each processor performs all 
tasks
 No master-slave relationship – all are peers
 Each processor performs the task within OS
 Example of SMP system is Solaris

SYMMETRIC MULTIPROCESSING ARCHITECTURE

A DUAL-CORE DESIGN

 Multi-chip and multicore
 Systems containing all chips

 Chassis containing multiple separate systems

TERMS TO KNOW AND REMEMBER:
 Single user system.
 Batch systems – No timing constraints. To speed up the processing, several simi-

lar jobs are put together as a group better system utilization.
 Multiprogramming – Several programs in memory at same time so that

CPU always has something
 Multiprocessing – Several jobs are handled at (virtually) same time.
 Time-sharing (multitasking)– CPU executes multiple jobs by switching among them
 Interactive Systems – Provide direct communication between the user and the system.
 Multiprocessor System – System has >= 1 CPU and system bus, clock and memory is

shared by all.
 Parallel systems
 Graceful degradation – With multiple resources, if a resource fails, work continues with

reduced efficiency.
 Fault tolerant Systems – systems those support graceful degradation.
 Real-time systems – used when there are rigid time requirements

(e.g. space shuttle, control systems,)
 Networked Systems – allows different processes on different systems to share

information on network
 Distributed systems – Different machines/OS communicate closely enough to provide

the illusion that there is only one system.

OPERATING-SYSTEM OPERATIONS

 Dual-mode operation allows OS to protect itself and 
other system components
 User mode and kernel mode 
 Mode bit provided by hardware

 Provides ability to distinguish when system is running user code or 
kernel code

 Some instructions designated as privileged, only executable in kernel 
mode

 System call changes mode to kernel, return from call resets it to user

System Calls

 Programming interface to the services provided by the 
OS

 Typically written in a high-level language (C or C++)
 Mostly accessed by programs via a high-level 

Application Program Interface (API) rather than direct 
system call use

 Three most common APIs are Win32 API for Windows, 
POSIX API for POSIX-based systems (including virtually all 
versions of UNIX, Linux, and Mac OS X), and Java API for the 
Java virtual machine (JVM)



System Call Implementation

 Typically, a number associated with each system call
 System-call interface maintains a table indexed according to 

these numbers

 The system call interface invokes intended system call 
in OS kernel and returns status of the system call and 
any return values

 The caller need know nothing about how the system 
call is implemented
 Most details of  OS interface hidden from programmer by 

API  
 Managed by run-time support library (set of functions built into 

libraries included with compiler)

OPERATING SYSTEM DESIGN AND IMPLEMENTATION

 Design and Implementation of OS not “solvable”, but some 
approaches have proven successful

 Internal structure of different Operating Systems  can vary widely

 Start the design by defining goals and specifications 

 Affected by choice of hardware, type of system

 User goals and System goals:

 User goals – operating system should be convenient to use, 
easy to learn, reliable, safe, and fast

 System goals – operating system should be easy to design, 
implement, and maintain, as well as flexible, reliable, error-
free, and efficient

OPERATING SYSTEM DESIGN & IMPLEMENTATION (CONT.)

 Important principle to separate
Policy:   What will be done?
Mechanism:  How to do it?
 Mechanisms determine how to do something, policies decide what will 

be done

 The separation of policy from mechanism is a very important 
principle, it allows maximum flexibility so that if policy 
decisions are to be changed later (example – timer)

 Specifying and designing an OS is highly creative task of 
software engineering

OPERATING SYSTEM STRUCTURE

 General-purpose OS is very large program
 Various ways to structure ones:

 Simple structure – MS-DOS
More complex -- UNIX
 Layered – an abstraction
Microkernel -Mach

SIMPLE STRUCTURE  -- MS-DOS

 MS-DOS – written to provide 
the most functionality in the 
least space
 Not divided into modules
 Although MS-DOS has some 

structure, its interfaces and 
levels of functionality are not 
well separated

NON SIMPLE STRUCTURE  -- UNIX

UNIX – limited by hardware functionality, the 
original UNIX operating system had limited 
structuring.  The UNIX OS consists of two 
separable parts
 Systems programs
 The kernel

Consists of everything below the system-call interface and 
above the physical hardware

Provides the file system, CPU scheduling, memory 
management, and other operating-system functions; a 
large number of functions for one level



TRADITIONAL UNIX SYSTEM STRUCTURE

Beyond simple but not fully layered

LAYERED APPROACH

 The operating system is divided into a 
number of layers (levels), each built on 
top of lower layers.  The bottom layer 
(layer 0), is the hardware; the highest 
(layer N) is the user interface.

 With modularity, layers are selected such 
that each uses functions (operations) and 
services of only lower-level layers

MICROKERNEL SYSTEM STRUCTURE 

 Moves as much from the kernel into user space  Microkernel
 Example  - Mach 

 Mac OS X kernel (Darwin) partly based on Mach
 Communication takes place between user modules using 

message passing
 Benefits:

 Easier to extend a microkernel
 Easier to port the operating system to new architectures
 More reliable (less code is running in kernel mode)
 More secure

 Detriments:
 Performance overhead of user space to kernel space 

communication

MICROKERNEL SYSTEM STRUCTURE 

MODULES

 Many modern operating systems implement loadable kernel 
modules
 Uses object-oriented approach
 Each core component is separate
 Each talks to the others over known interfaces
 Each is loadable as needed within the kernel

 Overall, similar to layers but with more flexible
 Linux, Solaris, etc.

Solaris Modular Approach

HYBRID SYSTEMS

 Most modern operating systems are actually not one pure 
model
 Hybrid combines multiple approaches to address 

performance, security, usability needs
 Linux and Solaris kernels in kernel address space, so 

monolithic, plus modular for dynamic loading of functionality
 Windows mostly monolithic, plus microkernel for different 

subsystem personalities

 Apple Mac OS X hybrid, layered, Aqua UI plus Cocoa
programming environment
 Below is kernel consisting of Mach microkernel and BSD Unix 

parts, plus I/O kit and dynamically loadable modules (called 
kernel extensions)



MAC OS X STRUCTURE IOS

 Apple mobile OS for iPhone, iPad

 Structured on Mac OS X, added functionality
 Does not run OS X applications natively

 Also runs on different CPU architecture (ARM 
vs. Intel)

 Cocoa Touch Objective-C API for developing apps
 Media services layer for graphics, audio, video
 Core services provides cloud computing, databases
 Core operating system, based on Mac OS X kernel

ANDROID

 Developed by Open Handset Alliance (mostly Google)
 Open Source

 Similar stack to IOS
 Based on Linux kernel but modified

 Provides process, memory, device-driver management
 Adds power management 

 Runtime environment includes core set of libraries and Dalvik
virtual machine
 Apps developed in Java plus Android API

 Java class files compiled to Java bytecode then 
translated to executable than runs in Dalvik VM

 Libraries include frameworks for web browser (webkit), 
database (SQLite), multimedia, smaller libc

ANDROID ARCHITECTURE

Major Achievements

 Processes
 Memory Management
 Information protection and security
 Scheduling and resource management
 System structure

Processes

 Processes are the fundamental structure of operating systems
 A process is a program in execution.
 A unit of activity characterized by a sequential thread of execution, 

current state, and an associated set of system resources
 Program is a passive entity, process is an active entity

 Process needs resources to accomplish its task
 CPU, memory, I/O, files
 Initialization data

 Process termination requires reclaim of any reusable resources
 Single-threaded process has one program counter specifying 

location of next instruction to execute
 Process executes instructions sequentially, one at a time, until 

completion



Processes

 Multi-threaded process has one program counter per thread
 Typically system has many processes, some user, some 

operating system running concurrently on one or more CPUs
 Concurrency by multiplexing the CPUs among the processes / threads 

 Processes solved the problems introduced by
 Multiprogramming batch operations
 Time sharing
 Real-time transaction systems

 Principle tool available to system programmers in developing 
multi-tasking systems is the interrupt!

Processes (continued…)

 Coordination of processes turned out remarkably 
difficult
 Improper synchronization
 Failed mutual exclusion
 Non-determinate program operation
 Deadlocks

 Processes consist of three components
 An executable program
 Associated data (variables, workspace, buffers, stacks, 

etc.)
 The execution context of the program

Processes Management Activities

 The operating system is responsible for the 
following activities in  connection with process 
management:
Creating and deleting both user and system 

processes
 Suspending and resuming processes
 Providing mechanisms for process synchronization
 Providing mechanisms for process communication
 Providing mechanisms for deadlock handling

Memory Management

 All data in memory before and after processing
 All instructions in memory in order to execute
 Memory management determines what is in 

memory when
 Optimizing CPU utilization and computer 

response to users 

Memory Management

 Principle storage management responsibilities
 Process isolation
 Automatic allocation/deallocation and management
 Support of modular programming, i.e., deciding which 

processes (or parts thereof) and data to move into and out 
of memory

 Protection and access control
 Long-term storage

 These requirements typically met by
 Virtual memory
 File system facilities

Information Protection and Security

 Time-sharing and computer networks require
 Availability
Confidentiality
Data integrity
 Authenticity



Scheduling and Resource Management

 Any resource allocation and scheduling policy 
must consider
 Fairness
Differential responsiveness
 Efficiency

 Processes/resources are dispatched using
Round-robin
 Priority levels
 Long-term / short-term queues


