
1

C h a p t e r 3
Processes

Process Concept

 Computers can do several activities at a time
 Executing user programs,

 reading from disks

 writing to a printer, etc.

 In multiprogramming:
CPU switches from program to program. CPU still runs only one program
at a time but gives an illusion of parallelism, called pseudo parallelism or
virtual CPU

 An operating system executes a variety of programs:
 Batch system – jobs
 Time-shared systems – user programs or tasks

Textbook uses the terms job and process almost interchangeably

Process Concept

 File – A passive entity, A named sequence of bytes
 Process – a program in execution; process execution must

progress in sequential fashion
 An active entity

 Needs certain resources such as CPU, memory, I/O

 Resources are allocated either at the beginning or during
execution on demand.

 At any given point in time, System consists of:
 System processes which execute systems code and the User

processes that execute user code and all of them exist
concurrently.

Process Concept (Cont.)

 An OS is responsible for following process related
activities
 Process creating and deletion
 Scheduling processes
 Provisions of mechanisms for synchronization,

communication and deadlock handling.
 Traditionally a process contained a single thread of

controls but most modern OS now supports processes
with multiple threads

Process Concept (Cont.)

 A process includes:
 A program counter (PC)
CPU registers:

for data manipulation

 Stack:
for function parameters, return address, etc.

 Data section:
for global variables

 Heap:
for dynamic allocation of memory during run time.

 Two processes may be associated with same program
and are considered two execution instances
 they have separate of PC, stack, heap, etc. even though the text

section (i.e., code is same). Example: several users running mail
program

Process Concept (Cont.)

 Conceptually, each process has its own virtual CPU
but in reality, there is only one CPU, shared by all
processes. Assume that there are 4 programs in
memory

 Abstract View: each process has its own CPU, running
independently

 Over period of time, all processes have made
progress but in reality, at any given point in time, only
one process is active.

2

Process Concept (Cont.)

Important: with switching back and forth,
 Rate at which a process performs computation may

not be uniform.
 Probably the time may not be reproducible even if

same processes are run again.
Therefore, no assumption should be made about built-in
timings.
Generally, most processes are not affected by
underlying multiprogramming of CPU or relative speed
of other processes

Process State

 As a process executes, it changes state

 new: The process is being created

 running: Instructions are being executed

 waiting: The process is waiting for some event to occur (I/O
completion or reception of a signal

 ready: The process is waiting to be assigned to a processor

 terminated: The process has finished execution

Process Control Block (PCB)

Information associated with each process
(also called process/task control block or PCB)
 Process state – running, waiting, etc.
 Program counter – location of instruction to next

execute
 CPU registers – contents of all process-centric

registers
 CPU scheduling information- priorities, scheduling

queue pointers
 Memory-management information – memory

allocated to the process
 Accounting information – CPU used, clock time

elapsed since start, time limits
 I/O status information – I/O devices allocated to

process, list of open files
 Pointer - point to the PCB of another process in

the list

CPU Switch From Process to Process

Threads

 So far, process has a single thread of execution
 Consider having multiple program counters per

process
 Multiple locations can execute at once

Multiple threads of control -> threads

 Must then have storage for thread details, multiple
program counters in PCB

 Will talk more about it in next chapter

Process Scheduling

 Uni-process system:
 No problem since there is only one process

 Multi-process system:
 Process waits until CPU is free (either because of I/O or time quantum

expiration)Maximize CPU use, quickly switch processes onto CPU for
time sharing

 Process scheduler selects among available processes for next
execution on CPU

 Maintains scheduling queues of processes
 Job queue – set of all processes in the system

 Ready queue – set of all processes residing in main memory, ready
and waiting to execute

 Device queues – set of processes waiting for an I/O device

 During its life, a processes migrate among various queues

3

Ready Queue And Various I/O Device Queues Representation of Process Scheduling

Queueing diagram represents queues, resources and flows

 Rectangles:Queue

 Circles: Resources that serve queues

Schedulers

 Short-term scheduler (or CPU scheduler or dispatcher) – selects which
process should be executed next and allocates CPU
 Sometimes the only scheduler in a system
 Short-term scheduler is invoked frequently (milliseconds)  (must

be fast)
 Long-term scheduler (or job scheduler) – selects which processes

should be brought into the ready queue
 Long-term scheduler is invoked infrequently (seconds, minutes) 

(may be slow)
 The long-term scheduler controls the degree of multiprogramming

 Processes can be described as either:
 I/O-bound process – spends more time doing I/O than

computations, many short CPU bursts
 CPU-bound process – spends more time doing computations; few

very long CPU bursts
 Long-term scheduler strives for good process mix

Addition of Medium Term Scheduling

 Medium-term scheduler can be added if degree of multiple
programming needs to decrease

 Remove process from memory, store on disk, bring back in
from disk to continue execution: swapping

Advantage: may improve job mix, free up limited memory

Scheduling (contd.)
 When does a scheduler executes?

1. a process switches from running to waiting
 select new process for CPU

2. a process terminates
 select new process for CPU

3. a process switches from running to ready
 select new process for CPU

4. a process switches from waiting to ready
5. a new process

Multitasking in Mobile Systems

 Some mobile systems (e.g., early version of iOS) allow only one
process to run, others suspended

 Due to screen real estate, user interface limits iOS provides for a
 Foreground:

 A single process - controlled via user interface

 Background:
multiple processes – in memory, running, but not on the display, and

with limits

 Limits include single, short task, receiving notification of events,
specific long-running tasks like audio playback

 Android runs foreground and background, with fewer limits
 Background process uses a service to perform tasks

 Service can keep running even if background process is suspended

 Service has no user interface, small memory use

4

Context Switch

 When CPU switches to another process, the system must save
the state of the old process and load the saved state for the
new process via a context switch

 Context of a process is represented in the PCB

 Context-switch time is a pure overhead; CPU is busy switching
between processes, not doing any ‘real work’ leads to bottle
neck
 The more complex the OS and the PCB  the longer the context

switch

 Time is dependent on hardware support
 Some hardware provides multiple sets of registers per CPU 

multiple contexts loaded at once

Operations on Processes

 System must provide mechanisms for:
 process creation,

 process execution

 process termination,

 …

Process Creation

 During execution, a process may create several new processes,
via a create-process system call.
 The creating process is called a Parent process,

 the new processes are called the children of that process.

 Each of these new processes may in turn create other processes,
forming a tree of processes

 In most OS including UNIX and Windows family, Processes are
identified by a unique id, called Process ID (PID).

A Tree of Processes in Linux

Process Creation (Cont.)

Every process needs resources (e.g., files, pointer, memory,
CPU time, etc.). 3 possible scenarios

1. Parent and children share all resources

2. Children share only a subset of parent’s resources

3. Parent and children share no resources. In this case, a child
process may ask for its own resources from OS
 It can get only a subset of the parent's resources.

 Why?

Prevents processes from overloading system

Process Creation (Cont.)

 UNIX examples
 A new process is created using fork() system call

 Parent and child share same address space

 Both continue after fork() system call.

 A return code: fork() == 0 for child and 1 for parent.

 execv() system call is used by one of the two processes to
replace the process's memory space with a new program.

5

Process Execution

Execution: 2 possibilities

1. Parent continues to execute concurrently with its children

2. Parent waits until some or all of its children are terminated

Process Termination

Process can termination either normally or abnormally

 How a process can terminate?

1. By itself
 A process terminates itself after execution of last statement by asking OS

to delete it by using the exit() system call.

 Resources are de-allocated.

2. A parent can terminate a child process (via abort() system call)

3. WHY?
 A child has exceeded its usage of some of the resources allocated to it

 The task assigned to child is no longer required

 The parent is exiting and the OS doesn't allow a child to continue if its
parent terminates (e.g., VMS)
 Cascaded termination: All children, grandchildren, etc. are terminated.

 The termination is initiated by the operating system.

Process Termination (contd.)

3. The parent process may wait for termination of a child process by using
the wait()system call. The call returns status information and the pid of the
terminated process

pid = wait(&status);

 If a process is terminating and its parent is not waiting for its termination
(i.e., did not invoke wait()yet) process is called a zombie
 All processes transition to this state when they terminate but generally they exist

as zombies ONLY briefly

 If parent terminated without invoking wait() , process is an orphan

 UNIX
 Child terminates by exit() system call
 wait() returns the process identifier of the child process so parent can

identify its child
 If parent terminates, children are assigned a new parent

 the ‘init’ process.

Multiprocess Architecture – Chrome Browser

 Many web browsers use to run as single process (some still do)
 If one web site causes trouble, entire browser can hang or crash

 Google Chrome Browser is multi-process with 3 different types
of processes:
 Browser process manages user interface, disk and network I/O

 Renderer process renders web pages, deals with HTML, JavaScript.
A new renderer is created for each website opened
 Runs in sandbox, restricting disk and network I/O, minimizing effect of

security exploits

 Plug-in process for each type of plug-in

Interprocess Communication

 Will talk about it when we start chapter on Process
Synchronization (Chapter 5)

Interprocess Communication

 Processes within a system may be independent or cooperating
 Cooperating process can affect or be affected by other

processes, including sharing data
 Reasons for cooperating processes:

 Information sharing
 Computation speedup
 Modularity
 Convenience

 Cooperating processes need interprocess communication
(IPC)

 Two models of IPC
 Shared memory
 Message passing

6

Communications Models

(a) Message passing. (b) shared memory.

Cooperating Processes

 Independent process cannot affect or be affected by the
execution of another process

 Cooperating process can affect or be affected by the
execution of another process

 Advantages of process cooperation
 Information sharing

 Computation speed-up

 Modularity

 Convenience

Producer-Consumer Problem

 Paradigm for cooperating processes, producer process
produces information that is consumed by a consumer process
 unbounded-buffer places no practical limit on the size of the buffer

 bounded-buffer assumes that there is a fixed buffer size

 Bounded-Buffer – Shared-Memory Solution
 Shared data

#define BUFFER_SIZE 10

typedef struct {

. . .

} item;

item buffer[BUFFER_SIZE];

int in = 0;

int out = 0;

Bounded-Buffer – Producer/Consumer Code
Producer code

item next_produced;
while (true) {
/* produce an item in next produced */
while (((in + 1) % BUFFER_SIZE) == out)

; /* do nothing */
buffer[in] = next_produced;
in = (in + 1) % BUFFER_SIZE;

}

Consumer code
item next_consumed;

while (true) {
while (in == out)

; /* do nothing */
next_consumed = buffer[out];

out = (out + 1) % BUFFER_SIZE;
/* consume the item in next consumed */

}

 Solution is correct, but can only use BUFFER_SIZE-1 elements

Interprocess Communication – Shared Memory

 An area of memory shared among the processes that
wish to communicate

 The communication is under the control of the users
processes not the operating system.

 Major issues is to provide mechanism that will allow the
user processes to synchronize their actions when they
access shared memory.

 Synchronization is discussed in great details in Chapter
5.

Interprocess Communication – Message Passing

 Mechanism for processes to communicate and to
synchronize their actions

 Message system – processes communicate with each
other without resorting to shared variables

 IPC facility provides two operations:
 send(message)
 receive(message)

 The message size is either fixed or variable

7

Message Passing (Cont.)

 If processes P and Q wish to communicate, they need to:
 Establish a communication link between them
 Exchange messages via send/receive

 Implementation issues:
 How are links established?

 Can a link be associated with more than two processes?

 How many links can there be between every pair of communicating
processes?

 What is the capacity of a link?

 Is the size of a message that the link can accommodate fixed or
variable?

 Is a link unidirectional or bi-directional?

Message Passing (Cont.)

 Implementation of communication link
 Physical:

 Shared memory

 Hardware bus

 Network

 Logical:
 Direct or indirect

 Synchronous or asynchronous

 Automatic or explicit buffering

Direct Communication

 Processes must name each other explicitly:
 send (P, message) – send a message to process P

 receive(Q, message) – receive a message from process Q

 Properties of communication link
 Links are established automatically

 A link is associated with exactly one pair of communicating
processes

 Between each pair there exists exactly one link

 The link may be unidirectional, but is usually bi-directional

Indirect Communication

 Messages are directed and received from mailboxes (also
referred to as ports)
 Each mailbox has a unique id

 Processes can communicate only if they share a mailbox

 Properties of communication link
 Link established only if processes share a common mailbox

 A link may be associated with many processes

 Each pair of processes may share several communication links

 Link may be unidirectional or bi-directional

Indirect Communication

 Operations
 create a new mailbox (port)

 send and receive messages through mailbox

 destroy a mailbox

 Primitives are defined as:
send(A, message) – send a message to mailbox A

receive(A, message) – receive a message from mailbox A

Indirect Communication

 Mailbox sharing
 P1, P2, and P3 share mailbox A

 P1, sends; P2 and P3 receive

 Who gets the message?

 Solutions
 Allow a link to be associated with at most two processes

 Allow only one process at a time to execute a receive
operation

 Allow the system to select arbitrarily the receiver. Sender
is notified who the receiver was.

8

Synchronization

 Message passing may be either blocking or non-blocking

 Blocking is considered synchronous
 Blocking send -- the sender is blocked until the message is

received

 Blocking receive -- the receiver is blocked until a message is
available

 Non-blocking is considered asynchronous
 Non-blocking send -- the sender sends the message and

continue

 Non-blocking receive -- the receiver receives:
 A valid message, or

 Null message

 Different combinations possible
 If both send and receive are blocking, we have a rendezvous

Synchronization (Cont.)

 Producer-consumer becomes trivial
 Produce code

message next_produced;

while (true) {
/* produce an item in next produced */

send(next_produced);

}

 Produce code

message next_consumed;

while (true) {

receive(next_consumed);

/* consume the item in next consumed */

}

Buffering

 Queue of messages attached to the link.

 implemented in one of three ways
1. Zero capacity – no messages are queued on a link.

Sender must wait for receiver (rendezvous)

2. Bounded capacity – finite length of n messages
Sender must wait if link full

3. Unbounded capacity – infinite length
Sender never waits

