
1

C h a p t e r 3
Processes

Process Concept

 Computers can do several activities at a time
 Executing user programs,

 reading from disks

 writing to a printer, etc.

 In multiprogramming:
CPU switches from program to program. CPU still runs only one program
at a time but gives an illusion of parallelism, called pseudo parallelism or
virtual CPU

 An operating system executes a variety of programs:
 Batch system – jobs
 Time-shared systems – user programs or tasks

Textbook uses the terms job and process almost interchangeably

Process Concept

 File – A passive entity, A named sequence of bytes
 Process – a program in execution; process execution must

progress in sequential fashion
 An active entity

 Needs certain resources such as CPU, memory, I/O

 Resources are allocated either at the beginning or during
execution on demand.

 At any given point in time, System consists of:
 System processes which execute systems code and the User

processes that execute user code and all of them exist
concurrently.

Process Concept (Cont.)

 An OS is responsible for following process related
activities
 Process creating and deletion
 Scheduling processes
 Provisions of mechanisms for synchronization,

communication and deadlock handling.
 Traditionally a process contained a single thread of

controls but most modern OS now supports processes
with multiple threads

Process Concept (Cont.)

 A process includes:
 A program counter (PC)
CPU registers:

for data manipulation

 Stack:
for function parameters, return address, etc.

 Data section:
for global variables

 Heap:
for dynamic allocation of memory during run time.

 Two processes may be associated with same program
and are considered two execution instances
 they have separate of PC, stack, heap, etc. even though the text

section (i.e., code is same). Example: several users running mail
program

Process Concept (Cont.)

 Conceptually, each process has its own virtual CPU
but in reality, there is only one CPU, shared by all
processes. Assume that there are 4 programs in
memory

 Abstract View: each process has its own CPU, running
independently

 Over period of time, all processes have made
progress but in reality, at any given point in time, only
one process is active.

2

Process Concept (Cont.)

Important: with switching back and forth,
 Rate at which a process performs computation may

not be uniform.
 Probably the time may not be reproducible even if

same processes are run again.
Therefore, no assumption should be made about built-in
timings.
Generally, most processes are not affected by
underlying multiprogramming of CPU or relative speed
of other processes

Process State

 As a process executes, it changes state

 new: The process is being created

 running: Instructions are being executed

 waiting: The process is waiting for some event to occur (I/O
completion or reception of a signal

 ready: The process is waiting to be assigned to a processor

 terminated: The process has finished execution

Process Control Block (PCB)

Information associated with each process
(also called process/task control block or PCB)
 Process state – running, waiting, etc.
 Program counter – location of instruction to next

execute
 CPU registers – contents of all process-centric

registers
 CPU scheduling information- priorities, scheduling

queue pointers
 Memory-management information – memory

allocated to the process
 Accounting information – CPU used, clock time

elapsed since start, time limits
 I/O status information – I/O devices allocated to

process, list of open files
 Pointer - point to the PCB of another process in

the list

CPU Switch From Process to Process

Threads

 So far, process has a single thread of execution
 Consider having multiple program counters per

process
 Multiple locations can execute at once

Multiple threads of control -> threads

 Must then have storage for thread details, multiple
program counters in PCB

 Will talk more about it in next chapter

Process Scheduling

 Uni-process system:
 No problem since there is only one process

 Multi-process system:
 Process waits until CPU is free (either because of I/O or time quantum

expiration)Maximize CPU use, quickly switch processes onto CPU for
time sharing

 Process scheduler selects among available processes for next
execution on CPU

 Maintains scheduling queues of processes
 Job queue – set of all processes in the system

 Ready queue – set of all processes residing in main memory, ready
and waiting to execute

 Device queues – set of processes waiting for an I/O device

 During its life, a processes migrate among various queues

3

Ready Queue And Various I/O Device Queues Representation of Process Scheduling

Queueing diagram represents queues, resources and flows

 Rectangles:Queue

 Circles: Resources that serve queues

Schedulers

 Short-term scheduler (or CPU scheduler or dispatcher) – selects which
process should be executed next and allocates CPU
 Sometimes the only scheduler in a system
 Short-term scheduler is invoked frequently (milliseconds) (must

be fast)
 Long-term scheduler (or job scheduler) – selects which processes

should be brought into the ready queue
 Long-term scheduler is invoked infrequently (seconds, minutes)

(may be slow)
 The long-term scheduler controls the degree of multiprogramming

 Processes can be described as either:
 I/O-bound process – spends more time doing I/O than

computations, many short CPU bursts
 CPU-bound process – spends more time doing computations; few

very long CPU bursts
 Long-term scheduler strives for good process mix

Addition of Medium Term Scheduling

 Medium-term scheduler can be added if degree of multiple
programming needs to decrease

 Remove process from memory, store on disk, bring back in
from disk to continue execution: swapping

Advantage: may improve job mix, free up limited memory

Scheduling (contd.)
 When does a scheduler executes?

1. a process switches from running to waiting
 select new process for CPU

2. a process terminates
 select new process for CPU

3. a process switches from running to ready
 select new process for CPU

4. a process switches from waiting to ready
5. a new process

Multitasking in Mobile Systems

 Some mobile systems (e.g., early version of iOS) allow only one
process to run, others suspended

 Due to screen real estate, user interface limits iOS provides for a
 Foreground:

 A single process - controlled via user interface

 Background:
multiple processes – in memory, running, but not on the display, and

with limits

 Limits include single, short task, receiving notification of events,
specific long-running tasks like audio playback

 Android runs foreground and background, with fewer limits
 Background process uses a service to perform tasks

 Service can keep running even if background process is suspended

 Service has no user interface, small memory use

4

Context Switch

 When CPU switches to another process, the system must save
the state of the old process and load the saved state for the
new process via a context switch

 Context of a process is represented in the PCB

 Context-switch time is a pure overhead; CPU is busy switching
between processes, not doing any ‘real work’ leads to bottle
neck
 The more complex the OS and the PCB the longer the context

switch

 Time is dependent on hardware support
 Some hardware provides multiple sets of registers per CPU

multiple contexts loaded at once

Operations on Processes

 System must provide mechanisms for:
 process creation,

 process execution

 process termination,

 …

Process Creation

 During execution, a process may create several new processes,
via a create-process system call.
 The creating process is called a Parent process,

 the new processes are called the children of that process.

 Each of these new processes may in turn create other processes,
forming a tree of processes

 In most OS including UNIX and Windows family, Processes are
identified by a unique id, called Process ID (PID).

A Tree of Processes in Linux

Process Creation (Cont.)

Every process needs resources (e.g., files, pointer, memory,
CPU time, etc.). 3 possible scenarios

1. Parent and children share all resources

2. Children share only a subset of parent’s resources

3. Parent and children share no resources. In this case, a child
process may ask for its own resources from OS
 It can get only a subset of the parent's resources.

 Why?

Prevents processes from overloading system

Process Creation (Cont.)

 UNIX examples
 A new process is created using fork() system call

 Parent and child share same address space

 Both continue after fork() system call.

 A return code: fork() == 0 for child and 1 for parent.

 execv() system call is used by one of the two processes to
replace the process's memory space with a new program.

5

Process Execution

Execution: 2 possibilities

1. Parent continues to execute concurrently with its children

2. Parent waits until some or all of its children are terminated

Process Termination

Process can termination either normally or abnormally

 How a process can terminate?

1. By itself
 A process terminates itself after execution of last statement by asking OS

to delete it by using the exit() system call.

 Resources are de-allocated.

2. A parent can terminate a child process (via abort() system call)

3. WHY?
 A child has exceeded its usage of some of the resources allocated to it

 The task assigned to child is no longer required

 The parent is exiting and the OS doesn't allow a child to continue if its
parent terminates (e.g., VMS)
 Cascaded termination: All children, grandchildren, etc. are terminated.

 The termination is initiated by the operating system.

Process Termination (contd.)

3. The parent process may wait for termination of a child process by using
the wait()system call. The call returns status information and the pid of the
terminated process

pid = wait(&status);

 If a process is terminating and its parent is not waiting for its termination
(i.e., did not invoke wait()yet) process is called a zombie
 All processes transition to this state when they terminate but generally they exist

as zombies ONLY briefly

 If parent terminated without invoking wait() , process is an orphan

 UNIX
 Child terminates by exit() system call
 wait() returns the process identifier of the child process so parent can

identify its child
 If parent terminates, children are assigned a new parent

 the ‘init’ process.

Multiprocess Architecture – Chrome Browser

 Many web browsers use to run as single process (some still do)
 If one web site causes trouble, entire browser can hang or crash

 Google Chrome Browser is multi-process with 3 different types
of processes:
 Browser process manages user interface, disk and network I/O

 Renderer process renders web pages, deals with HTML, JavaScript.
A new renderer is created for each website opened
 Runs in sandbox, restricting disk and network I/O, minimizing effect of

security exploits

 Plug-in process for each type of plug-in

Interprocess Communication

 Will talk about it when we start chapter on Process
Synchronization (Chapter 5)

Interprocess Communication

 Processes within a system may be independent or cooperating
 Cooperating process can affect or be affected by other

processes, including sharing data
 Reasons for cooperating processes:

 Information sharing
 Computation speedup
 Modularity
 Convenience

 Cooperating processes need interprocess communication
(IPC)

 Two models of IPC
 Shared memory
 Message passing

6

Communications Models

(a) Message passing. (b) shared memory.

Cooperating Processes

 Independent process cannot affect or be affected by the
execution of another process

 Cooperating process can affect or be affected by the
execution of another process

 Advantages of process cooperation
 Information sharing

 Computation speed-up

 Modularity

 Convenience

Producer-Consumer Problem

 Paradigm for cooperating processes, producer process
produces information that is consumed by a consumer process
 unbounded-buffer places no practical limit on the size of the buffer

 bounded-buffer assumes that there is a fixed buffer size

 Bounded-Buffer – Shared-Memory Solution
 Shared data

#define BUFFER_SIZE 10

typedef struct {

. . .

} item;

item buffer[BUFFER_SIZE];

int in = 0;

int out = 0;

Bounded-Buffer – Producer/Consumer Code
Producer code

item next_produced;
while (true) {
/* produce an item in next produced */
while (((in + 1) % BUFFER_SIZE) == out)

; /* do nothing */
buffer[in] = next_produced;
in = (in + 1) % BUFFER_SIZE;

}

Consumer code
item next_consumed;

while (true) {
while (in == out)

; /* do nothing */
next_consumed = buffer[out];

out = (out + 1) % BUFFER_SIZE;
/* consume the item in next consumed */

}

 Solution is correct, but can only use BUFFER_SIZE-1 elements

Interprocess Communication – Shared Memory

 An area of memory shared among the processes that
wish to communicate

 The communication is under the control of the users
processes not the operating system.

 Major issues is to provide mechanism that will allow the
user processes to synchronize their actions when they
access shared memory.

 Synchronization is discussed in great details in Chapter
5.

Interprocess Communication – Message Passing

 Mechanism for processes to communicate and to
synchronize their actions

 Message system – processes communicate with each
other without resorting to shared variables

 IPC facility provides two operations:
 send(message)
 receive(message)

 The message size is either fixed or variable

7

Message Passing (Cont.)

 If processes P and Q wish to communicate, they need to:
 Establish a communication link between them
 Exchange messages via send/receive

 Implementation issues:
 How are links established?

 Can a link be associated with more than two processes?

 How many links can there be between every pair of communicating
processes?

 What is the capacity of a link?

 Is the size of a message that the link can accommodate fixed or
variable?

 Is a link unidirectional or bi-directional?

Message Passing (Cont.)

 Implementation of communication link
 Physical:

 Shared memory

 Hardware bus

 Network

 Logical:
 Direct or indirect

 Synchronous or asynchronous

 Automatic or explicit buffering

Direct Communication

 Processes must name each other explicitly:
 send (P, message) – send a message to process P

 receive(Q, message) – receive a message from process Q

 Properties of communication link
 Links are established automatically

 A link is associated with exactly one pair of communicating
processes

 Between each pair there exists exactly one link

 The link may be unidirectional, but is usually bi-directional

Indirect Communication

 Messages are directed and received from mailboxes (also
referred to as ports)
 Each mailbox has a unique id

 Processes can communicate only if they share a mailbox

 Properties of communication link
 Link established only if processes share a common mailbox

 A link may be associated with many processes

 Each pair of processes may share several communication links

 Link may be unidirectional or bi-directional

Indirect Communication

 Operations
 create a new mailbox (port)

 send and receive messages through mailbox

 destroy a mailbox

 Primitives are defined as:
send(A, message) – send a message to mailbox A

receive(A, message) – receive a message from mailbox A

Indirect Communication

 Mailbox sharing
 P1, P2, and P3 share mailbox A

 P1, sends; P2 and P3 receive

 Who gets the message?

 Solutions
 Allow a link to be associated with at most two processes

 Allow only one process at a time to execute a receive
operation

 Allow the system to select arbitrarily the receiver. Sender
is notified who the receiver was.

8

Synchronization

 Message passing may be either blocking or non-blocking

 Blocking is considered synchronous
 Blocking send -- the sender is blocked until the message is

received

 Blocking receive -- the receiver is blocked until a message is
available

 Non-blocking is considered asynchronous
 Non-blocking send -- the sender sends the message and

continue

 Non-blocking receive -- the receiver receives:
 A valid message, or

 Null message

 Different combinations possible
 If both send and receive are blocking, we have a rendezvous

Synchronization (Cont.)

 Producer-consumer becomes trivial
 Produce code

message next_produced;

while (true) {
/* produce an item in next produced */

send(next_produced);

}

 Produce code

message next_consumed;

while (true) {

receive(next_consumed);

/* consume the item in next consumed */

}

Buffering

 Queue of messages attached to the link.

 implemented in one of three ways
1. Zero capacity – no messages are queued on a link.

Sender must wait for receiver (rendezvous)

2. Bounded capacity – finite length of n messages
Sender must wait if link full

3. Unbounded capacity – infinite length
Sender never waits

