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Chapter 4:  Threads

Motivation

 Generally, a process is defined by two characteristics:
1. An execution state (running, ready, etc.) and the location at 

which it is executing 

2. Resources it uses such as the memory, I/O channels, I/O devices, 
files, etc.

 A typical process has:
 An address space to hold the process image

 Protected access to CPU, other processes (for inter-process 
communication), files and I/O resources.

 In many instances, it is useful for resources to be shared and 
accessed concurrently. For example, a browser may have a 
thread to display text/image, receiving another request for a 
page, another thread to retrieve data from network yet 
another one to print a web page.

Motivation (contd.)

 Traditional approach:
Single process (thread of execution) in which concept of thread is not 
recognized and the process is called a heavyweight process.

 In modern operating Systems, the Unit of CPU utilisation or dispatching 
is usually referred as thread. 
 Generally consists of program counter, a register set, and a stack space.
 In a multiple process model, each process operates independent of others 
 useful if jobs performed are unrelated. 

 Multiple processes can also perform the same task  less efficient.

Motivation (contd.)

 Multithreading is the ability of an OS to support multiple threads of 
execution within a single process.

 Shares with other peer threads its code section, data section, and 
other OS resources. Most modern applications are multithreaded

 Threads run within application

 Multiple tasks with the application can be implemented by separate 
threads
 Update display

 Fetch data

 Spell checking

 Answer a network request

 Process creation is heavy-weight while thread creation is light-weight

 Can simplify code, increase efficiency

 Kernels are generally multithreaded

Threading

Multiple processes
one thread / process, e.g. UNIX

Multiple processes, multiple threads / process
e.g., Solaris, Linux, NT, Mach, etc.

One process one thread 
e.g. MS-DOS

One process. multiple threads
e.g. Java run-time engine

Multithreaded Server Architecture
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Benefits

 Responsiveness – may allow continued execution if part of process is 
blocked, especially important for user interfaces

 Resource Sharing – threads share resources of process, easier than 
shared memory or message passing

 Economy – due to extensive resource sharing
 Less time to create a new thread in an existing process than to create a 

brand new process. In Solaris, it is 30 times faster to create a new thread than 
creating a new process. Context switching is 5-times faster.

 Less time to terminate a thread
 Less time to switch between two threads within the same process (a thread 

context switch still requires a register set switch but no memory-
management-related work need to be done).

 Enhance efficiency of communication between different executing 
programs. 
 No intervention of kernel to provide protection / communication. 

 Scalability – process can take advantage of multiprocessor 
architectures
 Multithreading on a multi-CPU machine or multi-CORE processor increases 

parallelism  threads may be running in parallel on different processors.

Multicore VS Multi-Processor Systems

 A multi-core architecture is more efficient than a multi-processor 
system because of:
 faster on-chip communication 

 Uses less power.

 Each core has its own set of registers as well as own cache (or can 
also use shared cache). These N-cores appear to the OS as N 
standard processors.

 Economy

Thread Model

Within a process, there may be one or more threads, each with the 
following:
 A thread execution state (Running, ready, blocked, terminated) -

much like the states of a process
 A saved thread context when not running; 

one-way to view a thread is as an independent program counter 
operating within a process.

 An execution stack.
 Some per-thread static storage for local variables
 Access to memory and resources of its process, shared with all 

other threads in that process.

Thread Model (contd.)

In a single threaded process model, the representation includes:

 Process control block (PCB)

 User address space

 User and kernel stacks to manage the call/return behaviour of the executing 
process.

 While process is running, processor registers are controlled by that process

 Contents of these registers are saved when the process is not running

Thread Model (contd.)

In a multithreaded environment:
 Single process control block

 User address space

 Separate stacks for each thread

 Separate control block for each thread containing register image, priority, 
and other thread related state information.

All threads of a process:
 Share the state and resources of the process

 Reside in the same address space and have access to the same 
code/data.

 When one thread alters an item of data in memory, other threads see the 
results if and when they access that item.

 If a thread opens a file with read privileges, other threads in same process 
can also read from that file.

Multicore Programming

 Multicore or multiprocessor systems putting pressure on 
programmers, challenges include:
 Dividing activities

Find areas that can be divided into separate concurrent tasks and thus can run in 
parallel on individual cores

 Balance
While identifying tasks that can run in parallel need to make sure that the tasks 
perform equal work

 Data splitting
Just as applications are divided into separate tasks, the data accessed and 
manipulated by the tasks must be divided to run on separate tasks

 Data dependency
Data accessed by tasks must be examined for dependencies between two or 
more tasks. For cases of dependencies, the execution of tasks must be 
synchronized to accommodate data dependency

 Testing and debugging
When programming is running in parallel on multiple cores, there are many paths. 
Testing and debugging of these paths is inherently more difficult
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Multicore Programming

 Parallelism implies a system can perform more than one task 
simultaneously

 Concurrency supports more than one task making progress
 Single processor / core, scheduler providing concurrency

 On a single core system, concurrency means inter-leaving of 
threads execution.

 On a multi-core system, concurrency  threads can run in parallel.

 Concurrent execution on single-core system:

Parallelism on a multi-core system

Multicore Programming (Cont.)

 Types of parallelism 
 Data parallelism – distributes subsets of the same data across 

multiple cores, same operation on each

 Task parallelism – distributing threads across cores, each 
thread performing unique operation

 As # of threads grows, so does architectural support for 
threading
 CPUs have cores as well as hardware threads

 Consider Oracle SPARC T4 with 8 cores, and 8 hardware 
threads per core

Thread Functionality

A Thread has:
 Execution State
May synchronise with one another

Thread Functionality (contd.)

Thread States: 

 Spawn: 
 Typically when a new process is spawned, a thread for that process is also spawned.

 A thread within a process may spawn another thread within the same process, 
providing an instruction pointer and arguments for the new thread.

 New thread is provided with its own register context and stack space. Placed on the 
ready list.

 Block:
 When a thread needs to wait for an event, it will block (saving its user registers, PC 

and SP).

 Processor may now turn to the execution of another ready thread.

 Unblock:
 When the event for which a thread is blocked occurs, the thread is moved to the 

ready state.

 Finish:
 When a thread completes, its register context and stacks are de-allocated.

Thread Functionality (contd.)

Thread synchronisation:
 All threads of a process share the same address space and 

other resources, such as open files. 
 Alteration of a resource by one thread affects the environment of the 

other threads in the same process.

 Necessary to synchronise the activities of various threads so 
that they do not interfere with each other or corrupt data 
structures. 
 For example, two threads try to add an element to a double linked list, one 

element may be lost or the list may end up malformed.

 Many different methods and techniques - same as for 
processes. We will talk about these later on in next chapters.

User-level Threads & Kernel-level Threads

Two broad categories of implementation:
 User-level threads - management done by user-level threads library

 Thread management is done by the application  kernel is not aware of 
the existence of the threads

 Any application can be programmed to be multithreaded by using a 
thread library.

 Three primary thread libraries:
 POSIX Pthreads

 Windows threads

 Java threads
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User-level Threads

 Thread library contains code for:
 Creating and destroying threads

 Message passing between threads

 Scheduling thread execution

 Saving and restoring thread contexts.

User-level Threads (contd.)

By default, an application begins as a single thread and 
begins running in that thread
 Application and its thread are allocated to a single 

process managed by the kernel.
 When the application is in running state, it can spawn a 

new thread to run within the same process
 Spawning is done using the spawn utility in the thread 

library.
 Control is passed to that utility by a function call.
 Thread library creates a data structure for the new thread 

and then passes control to one of the threads within the 
process that is in ready state using some scheduling 
algorithm.

User-level Threads (contd.)

 When control is passed to the library, the context of the 
current is saved, and when control is passed from library 
to the thread, the context of that thread is restored

 Context consists of:
 Contents of user registers

 Program counter

 Stack Pointer

 All of this activity takes place in user space and within a 
single process and kernel is unaware of this activity.

 Kernel continues to schedule the process as a unit and 
assigns a single execution state.

User-level Threads (contd.)

Advantages:
 Thread switching doesn't require kernel mode privilege (all of the 

data structures are within the user address space. Therefore, the 
process doesn't switch to the kernel mode to do thread 
management). 
 saves the overhead of two mode switches (user to kernel and kernel to 

user), i.e., fast switching.

 Scheduling can be application specific.

 One application might benefit most from simple Round-Robin 
scheduling algorithm while other might benefit from priority-based 
scheduling.

 Scheduling algorithm can be modified without disturbing underlying 
OS scheduler.

 User-level threads (ULT) can run on any operating system. No 
changes are required to change the underlying kernel to support 
ULT.

User-level Threads (contd.)

Disadvantages:
 In a typical OS, most system calls are blocking. When a thread 

executes a system call, not only that thread but the entire process is 
blocked.

 In a pure User-level Thread system, a multithreaded application 
cannot take advantage of several cores/CPU system.
 A kernel assigns one process to only one processor at a time, i.e., only a 

single thread within a process can execute at a time.

Kernel-level Threads

Kernel-level threads
 All of the thread management is done by the kernel.
 For applications, there is an application-programming 

interface (API) to the kernel thread facility
 Examples – virtually all general purpose operating systems, 

including:
Windows 

 Solaris

 Linux

 Tru64 UNIX

Mac OS X
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Kernel-level Threads (contd.)

 An application can be programmed to be multithreaded.
 All of the threads within an application are supported 

within a process.
 Kernel maintains the context information for the process 

as a whole and that of the individual threads.
 Scheduling by the kernel is done on a thread basis.
 Overcomes two main drawbacks for the User-Level 

Threads:
1. Kernel can simultaneously schedule multiple threads from the same 

process on multiple processors.

2. If one thread in a process is blocked, the kernel can schedule 
another thread of the same process.

Multithreading Models

 Many-to-One

 One-to-One

 Many-to-Many

Many-to-One

 Many user-level threads mapped to 
single kernel thread

 One thread blocking causes all to 
block

 Multiple threads may not run in 
parallel on muticore system because 
only one may be in kernel at a time

 Few systems currently use this model

 Examples:
 Solaris Green Threads

 GNU Portable Threads

One-to-One

 Each user-level thread maps to 
kernel thread

 Creating a user-level thread 
creates a kernel thread

 More concurrency than many-
to-one

 Number of threads per process 
sometimes restricted due to 
overhead

 Examples
 Windows

 Linux

 Solaris 9 and later

Many-to-Many Model

 Allows many user level threads to 
be mapped to many kernel 
threads

 Allows the  operating system to 
create a sufficient number of 
kernel threads

 Solaris prior to version 9

 Windows  with the ThreadFiber
package

Two-level Model

 One variation of many-to-many model is to multiplex many user-level 
threads to a smaller or equal number of kernel threads but also allow 
a user-level thread to be bound to a kernel thread, for example: 
Solaris

 Thread creation, scheduling and synchronisation of threads within an 
application are done completely in the user space.

 The programmer has the liberty of adjusting the number of Kernel-
Level Threads for a particular application and machine to achieve 
the best overall results.

 Multiple threads within the same application can run in parallel on 
multiple processors.

 Therefore, a blocking system call need not block the entire process.
 A proper design can combine the advantages of pure User or 

Kernel-Level Threads while minimising the disadvantages.
 Examples

 IRIX
 HP-UX
 Tru64 UNIX
 Solaris 8 and earlier
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Two-level Model

Important Questions:
1. Does the blocking of thread results in the blocking of the entire process?
2. Does this prevent execution of any other thread in the same process even if that other 

thread is in a ready state?

 Answer depends on whether it is a User-Level Threading or the Kernel-Level Threading. 
More effect in User-level threading.

 Example: Assume 2 processes, P0 and P1 such that process P1 is executing in its thread 3. 
Possible scenarios:
1. Application executing in Thread 3 makes a system call (e.g., I/O call is made)  P1 

blocks 
 Control is transferred to the kernel.

 Kernel invokes the I/O action and places process P1 in wait state. 

 Transfers control to process P0

 According to the data structure maintained by the thread library, Thread 3 of process P1 is still in 
running state.

 This process is not actually in running state but is perceived in the running state.

2. A clock interrupt passes control to the kernel.
 Kernel determines that process P1 has exhausted its time quantum

 Kernel places process P1 in the ready state and switches to process P0

 According to the data structure maintained by the thread library, thread 3 of process P1 is still in 
running state.

Thread Libraries

 Thread library provides programmer with API for 
creating and managing threads

 Two primary ways of implementing
 Library entirely in user space

 Kernel-level library supported by the OS

Pthreads

 May be provided either as user-level or kernel-level

 A POSIX standard (IEEE 1003.1c) API for thread creation 
and synchronization

 Specification, not implementation
 API specifies behavior of the thread library, 

implementation is up to development of the library

 Common in UNIX operating systems (Solaris, Linux, Mac OS 
X)

Pthreads Example

Pthreads Example (Cont.) Pthreads Code for Joining 10 Threads
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Windows  Multithreaded C Program Windows  Multithreaded C Program (Cont.)

Java Threads

 Java threads are managed by the JVM
 Typically implemented using the threads model provided 

by underlying OS
 Java threads may be created by:

 Extending Thread class
 Implementing the Runnable interface

Java Multithreaded Program

Java Multithreaded Program (Cont.) Implicit Threading

 Growing in popularity as numbers of threads increase, 
program correctness more difficult with explicit threads

 Creation and management of threads done by 
compilers and run-time libraries rather than programmers

 Three methods explored
 Thread Pools

 OpenMP

 Grand Central Dispatch

 Other methods include Microsoft Threading Building 
Blocks (TBB), java.util.concurrent package



8

Thread Pools

 Create a number of threads in a pool where they await 
work

 Advantages:
 Usually slightly faster to service a request with an existing 

thread than create a new thread

 Allows the number of threads in the application(s) to be 
bound to the size of the pool

 Separating task to be performed from mechanics of 
creating task allows different strategies for running task
 i.e.Tasks could be scheduled to run periodically

 Windows API supports thread pools:

Thread Cancellation

 Terminating a thread before it has finished

 Thread to be canceled is target thread
 Two general approaches:

 Asynchronous cancellation terminates the target thread 
immediately

 Deferred cancellation allows the target thread to periodically 
check if it should be cancelled

 Pthread code to create and cancel a thread:

Thread Cancellation (Cont.)
 Invoking thread cancellation requests cancellation, but 

actual cancellation depends on thread state

 If thread has cancellation disabled, cancellation remains 
pending until thread enables it

 Default type is deferred
 Cancellation only occurs when thread reaches cancellation 

point
 I.e. pthread_testcancel()

 Then cleanup handler is invoked

 On Linux systems, thread cancellation is handled through 
signals

Thread-Local Storage

 Thread-local storage (TLS) allows each thread to have its 
own copy of data

 Useful when you do not have control over the thread 
creation process (i.e., when using a thread pool)

 Different from local variables
 Local variables visible only during single function invocation

 TLS visible across function invocations

 Similar to static data

 TLS is unique to each thread

Scheduler Activations
 Both M:M and Two-level models require 

communication to maintain the appropriate 
number of kernel threads allocated to the 
application

 Typically use an intermediate data structure 
between user and kernel threads –
lightweight process (LWP)
 Appears to be a virtual processor on which 

process can schedule user thread to run

 Each LWP attached to kernel thread

 How many LWPs to create?

 Scheduler activations provide upcalls - a 
communication mechanism from the kernel 
to the upcall handler in the thread library

 This communication allows an application to 
maintain the correct number kernel threads

Operating System Examples

 Windows Threads

 Linux Threads
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Windows Threads

 Windows implements the Windows API – primary API for 
Win 98, Win NT, Win 2000, Win XP, and Win 7

 Implements the one-to-one mapping, kernel-level

 Each thread contains
 A thread id

 Register set representing state of processor

 Separate user and kernel stacks for when thread runs in user 
mode or kernel mode

 Private data storage area used by run-time libraries and 
dynamic link libraries (DLLs)

 The register set, stacks, and private storage area are 
known as the context of the thread

Windows Threads (Cont.)

 The primary data structures of a thread include:
 ETHREAD (executive thread block) – includes pointer to 

process to which thread belongs and to KTHREAD, in kernel 
space

 KTHREAD (kernel thread block) – scheduling and 
synchronization info, kernel-mode stack, pointer to TEB, in 
kernel space

 TEB (thread environment block) – thread id, user-mode 
stack, thread-local storage, in user space

Windows Threads Data Structures Linux Threads

 Linux refers to them as tasks rather than threads
 Thread creation is done through clone() system call

 clone() allows a child task to share the address space of 
the parent task (process)
 Flags control behavior

 struct task_struct points to process data structures 
(shared or unique)


